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The problem of optimal control of nonlinear oscillatory motions with unspeci- 
fied instant of the control process termination is investigated. The motion is 
assumed to be specified by the conventional system with a rotating phase and 
frequency strongly dependent on the slow vector [l ,2]. It is assumed that 
the problem satisfies the principle of maximum [3]. The method of averaging 
[23 is used for formulating a two-point first approximation problem which pro- 
vides the optimal solution and is simpler and of lower dimension. The pro - 
posed method can be used for solving applied control problems of the type of 
time-optimal response for nonlinear oscillatory systems by applying small but 
protracted control actions. Specific examples of mechanical nature ace cal- 
culated. 
Approximate analytical methods of solving optimal control problems, including 
asymptotic methods based on the concept of the small parameter and sepaca - 
tion of motions were developed in [2,4 -7 1 and others. The case of the asymp 
totically slowly reached fixed instant of the control process termination was 
considered in [2], and in [S] the author investigated the quasi-linear problem 
similar to the one considered here. 

1. Statement of the problem. We consider the problem of control by a system of 
conventional form [ 2.6 ] 

a’ = cf (a, 4, u, a), a (t3 = QJ (1.1) 

9’ = o(o) + aF (a, 9, u, a), 9 (to) = $0 

where o is the vector of slow variables of arbitrary dimension n > 2 in some 
bounded region ; 
0 (a) > wo > 0 

$ is the fast scalar variable (the rotating phase), I$I< 00; 

is the frequency throughout the considered region of variation of 
a; u E u is the vector of controlling functions of dimension m and U is a 

fixed convex region; E E LO, e,], e, > 0 is a small numerical parameter; a dot 
denotes different&ion with respect to time i! E [to, tr], tl - 8-l; to, UOV and ‘$0 

ace initial data. In the indicated region the right-hand sides of equations of system 
(1.1) ace assumed determined and fairly smooth so that the substitution of admissible 
bounded piecewise continuous control functions u ensures the existence and unique- 
ness of solution of the system in the interval t E [to, t,] for all e > 0. The ce- 
quirements for smoothness that are necessary for substantiation and application of the 
proposed method are defined more exactly later. 

We pose the following problem of optimal control: the phase point of system (1.1) 
is to be transferred onto the manifold 

75 



16 L . D , Akulenko 

(1.2) 

at some unspecified instant of time t1 so that 

J = g (a, E) ItI --f min UEU (1.3) 

where functions M and g are considered to be fairly smooth. 
The essential feature of the above formulation of the problem is the assumption of 

the independence of functions M and g of the fast variable $.. In the case of 
strong dependence of o on a (0’ (n) - 1) in the averaging schemes [l, 21 the 
value of that variable is determined with reduced absolute accuracy which, generally 
speaking, does not allow in the opposite case to construct the first approximation 
boundary value problem. Moreover, on such assumption we have t, - ~-1 which 
makes possible the use of the asymptotic method of averaging for an approximate so- 
lution of the boundary value problem of the maximum principle. It should be noted 

that in practical problems involving small but protracted control actions, the quantity 
I$, i.e. the position of the object in the phase space is usually not specified. In such 

problems the interest is focused on the variation of motion parameters (the slow vari - 

ables a > which remain when .s=O . For example, in Kepler’s limited plane 
problem [8,9] such parameters are the energy and the moment of momentum or the 
orbit eccentricity and the focal parameter, and the initial true anomaly (see Example 

2 in Sect. 3); in the problem of optimal control of an asymmetric solid body rotation 
about its center of mass (Euler’s case) these are the moment of momentum and energy 
or other integrals of unperturbed motion [lo] (see Example 3 in Sect. 3 ). 

The approximate solution of the problem of optimal control (1.1) - (1.3 ) is con- 
structed on the basis of the necessary conditions of the maximum principle [3] on the 
assumption that such solution exists and is unique for any E E IO, &,,I. Then the 
condition of maximum of the problem Hamiltonian 

H (a, 9, p, q, u, E) = E (pf) + q (0 + EF) - oq + Eh (1.4) 

with respect to UEU and fixed other arguments uniquely determine the unique 
optimal control 

ZJ = u* (a, 9, p, 4, a) (1.5) 

Function u* is assumed to be fairly smooth and 2rr; -periodic with respect to 
9 [a]. In (1.4) p and q are variables conjugate of a and $ that satisfy 

the system of equations and the transversality conditions at the right-hand end 

ari 
p=-XT,* I = - o’q -g 2 I arl d) P(h) = - g (am, 

aH I ail 
Q = - all, u* = - E jq I 1L*Y q (h) = 0 

(1.6) 

where a is a constant vector which is to be determined, and expressions of the 
kind (UM) andsimilar in (1.4) denote scalar products. Variables a and $ are 
determined by the joint solution of the two-point problem (1.1) ,(l. 2), (1.5 ) and (1.6 ). 
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The system cf bcnmdary conditions is closed by the relationship 

which can be considered as the equation in the unkncwn $1. Since the canonicalsys- 
tern (1.11, (1.6 ) is antomcnmous , it follows from (1.7 ) that along the considered 
trajectories for all t E fro, $11, 

H* = oq + .sh* = 0 0.8) 

The asterisk indicates that the expression for u* in (1,S ) is substituted for u . 
The nonstandard system of eguatians (which contains in the first vector equation (1.6) 
the term w’q ) is reduced to the standard form, as in [2 ], using the identity (1.8 ) . 

We thus have to derive a solution of the boundary value problem which yields the mini- 
mum cf functional (1.3 ). 

2. Derivation of ff rst approximation solution, Below we consider the solution of 
the boundary value problem which satisfies condition (1.7 ) , and makes possible the 
reduction of Eqs. (1.1) and (1.6 ) to a system of the standard form that does not contain 
the variable q 

a* = @o* (a, 4, p) + E2fr, 1-17’ = tQ (a) + EF CAlI 

p’ = --EO’ (a)w-l (pf,*) - Ed (pf,“) / da + GP, 
where q = ---cco-~ (pfB*) + EQ is obtained by solving Eqs (1.8 1 for that variable, 
w~chis~ible when E is fairly small, since o (a) > o. > 0. In reconsidered re- 
gion functions fl, PI and & are uniformly bounded. Their explicit form is not adduced 
since it is unimportant in the case of first order solution, and terms 0 ( a2) in (2,l) can 
be disregarded (1,2 1, 

The algorithm of solution of the input boundary value problem consists of deriving 
a set of solutions of the shortened boundary value problem for system (2. I ) with apper- 
taining initial and boundary conditions (1.1) v (1.2) and (1.6 ) . The quantity tr can 
be conveniently taken as the parameter of the set * It is assumed below that the solution 
e = e (t, r~, e), P = P (r, &, a), and* = $ (t, tl, @of the boundary value problem 
exists and is unique for any specified tr (ti - E -I) . For brevity the dependence on 

a0 and q. is not given. The complete solution of the input boundary value prob- 
lem (see Sect. 1) is obtained when parameter tl is determined and satisfies the 
equation 

h* It, = (Pf*)fl = 0 (2.2) 

If the admissible root ti (a) (tl - E-‘) is unique, the obtained solution of 
the boundary value problem is also the solution of the problem of optimal control (1.11 
- (1.3 ) [3 1, However, as implied by (2.2 1, that equations has for small e many 

roots whose number is generally of order [e-l]. This is due to that the left-hand side 
of Eq. (2.2) h* [tl, E] is an oscillating function of parameter r, whose frequency 
and amplitude are of the order of unity, and the mean value <h*> over 9 is a 
slow varying function of tr , i.e. d <h*> / dtl - E. The typical behavior of h* 
and <h*> as functions of a1 ( “G = Et is the slow time ) is shown in Fig. 1, 

Among the discrete set of roots it is necessary to select that which minimizes the 
functional (1.3), i.e. J* = min J, zl* E {q}. Subsequent analysis will show 



78 L . D . Akulenko 

that the typical dependence of the functional on ‘cl is of the form shown in Fig, 2 

Fig. 1 Fig. 2 

(see Example 1 in Sect, 3 ). The asymptotically considerable number of solutions of 
the boundary value problem makes it difficult to use known numerical methods of sol- 
ving problems of optimal control. The procedure described below makes possible the 
derivation of the approximate solution using slow variables and the functional with an 
accuracy -8 . 

The corresponding to (2.1) averaged system of first approximation equations is ob- 
tained by rejecting terms of order ea and averaging over the phase 9 with fixed 
slow variables a and p 

@ / dr = fo (E, q), z E IO, cl, ~1 - 1 (2.3) 

where 5 and 11 are the averaged slow variables and fo is the mean value of 
function fo* over 4. The system of initial and boundary conditions is of the form 

F; (0) = a07 MO @PI = 0, rl (71) = - (aMo’)7, (2.4) 

(MO (E) = M (E, 0)) 

Let us assume that the boundary value problem (2.3 ) , (2.4 ) has the unique solu- 

tion E=E(z, z,), q = q (‘t, ‘cr) for any specified r1 - 1 , and that to a 
small variation of initial and boundary conditions of order -E in the right-hand sides 
of Eqs. (2.3 ) corresponds to a similar variation of solution, The difference between 
the solutions of the input boundary value problem and the problem averaged over slow 
variables is then of order E [23. Using successive approximations with respect to 
powers of parameter e e it is possible to show that on condition of uniqueness of so- 
lution of the boundary value problems (2.1) and (2.3) indicated above and the fulfil- 
ment of smoothness requirements which ensure the e -closeness of the corresponding 
Cauchy problems for the considered equations [l 1, a similar closeness exists for solu - 
tions of boundary value problems in any interval t E [to, tl], tI = Le-I, where 

L is a constant which can be as large as desired and fairly small e. 
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+ 0 (8) (2.5) 

Q = e@-“‘(E) wo* (E, II?, rl)) + 0 f@)* 
0 

The problem of optimal control is solved in the first approximation when the op- 
timal instant ‘c1 of the control process termination is defined with an error 0 (e). 
The equation 

obtained from (2.2) by substituting into it expressions (2.5 ) is inadequate for deter- 
mining z1 with the required accuracy, since the phase 9 is determined with 
an error 0 (1). However, owing to the fast oscillation relative to ~1 (with fce- 
su=cy ~8-1 and amplitude of order unity ) of the left-hand side of (2.6 ),established 
previously, it is possible to maintain that in the e -neighborhood of each of coots 

{‘G} calculated without regard to errors, there exists a coot of Eq. (2.2). For this 
it is sufficient that the equation 

@Cl (E (G/G), rl (r1, G))> = 0 (2.7) 

has a real root ‘Cl*, and 

(2.8) 

In what follows these conditions ace assumed to be satisfied. it 
to determine an error 0 (e-1, the admissible values of 71 can be 
selected in the a certain continuous interval z1 E 
Iz 1) , 

The optimal value of % is obtained from the condition (1.3 ) of m~imum of 
functional J calculated with an error 0 (E) and considered to be a function of the 
con~uo~ argument z1 E lrl’, zInl 

JO = g0Vi(% Q>-+ mJIn 
(2.9) 

Below we present the necessary and sufficient conditions of optimum of ri and 
solution (2.5) of system (2.3 ) , First, it should be noted that the system admits the 
integral 

x = - (do (El s)W (E) (2.10) 

which shows that the mean value of q in the interval At - e-l is constant with- 
in an error 0 (e”) , This is so, since ~ff~ntiati~ of (2.10 ) with respect to 7 
yields the identity dx / o?z E 0 by virtue of Eqs. (2.3 ) with allowance for the 
~~tio~~p a (?&) I aq = f* l As the result, system (2.3 ) can be represented in 
the equivalent form 
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g=fotLri), g= -“‘(E)X-$‘lfo) (2.11) 

where X is the unknown parameter related to the sought quantity ~1 by the con- 
dition [S] 

[a (C)x + Wo (E, rlNl+* = 0 (2.12) 

where E = E @, ~1, 4, q = ?J (z, Tit x) is the solution of the boundary value 
problem for Eqs. (2.11) . If (2.12 > is solved for ‘~1 = ‘cl (x) , then, after the 
substitution Into ccnditicn (2.6), we obtain that in the E -neighborhood of any x 
that belongs to some neighborhood of point ?c = 0: x E ix’, ~“1, X’ < 0, X" > 0 
under condition 

d 
Q!x) 

dx s 
o(E(% %(X)7 X))df#O (2.13 1 

0 

there exists a root of the exact equation (2.2). 
Thus the rn~~I~tion of functional Jo (2.9 1 with respect to z1 CZ Izr’, 7cl 

reduces to the minimization with respect to x E [x’, x”] with allowance for con- 
dition (2.12 1. The necessary condition of a local minimum is that the total derivative 
with respect to x 

dJ,/dx = - hd&x I d4, %, = Et,, 71 = qr, 

be zero. Use is made here of the identity MO (g,) E 0, i. e, dll/l, / & IT1 =: 0. 
The derivative &, / dx is 

It follows from (2.11) and (2.12 ) that 

(2,141 

Formula (2.14) implies that x = 0 is a suspected extremal point, Furthermore, if 

(2.15 1 

(see (2.8 ) and (2.13 ) ) , then x = 0 is a point of local minimum. In this fOrmUla 
‘Go (0) is the positive root of 4. (2.12) determined for x = 0. If in the whole 

neighborhood of x E [x’, x”] 

(2.16) 

then x = 0 is the point of absolute minimum of functional Jo (x), since 

Jo (x) = J,, (0) + x 3 o (E) dz - f dx, ” !“a (5 (z, z1 (xl), xl)) dz: 
0 0 0 
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The establishment of formula (2.14 ) is the basic result of the analysis of the prob- 
lem of optimal control (1.1) - (1.3 ) , 

Note that because 0 (C)x + (rfO) = conat the system (2.11) is Hamiltonian, 
and since x = 0 is the optimal value, it follows from the condition (2.12 ) of trans- 
versality that (qfo (E, q)) = 0. Here E, q is the solution of system (2.11) for 
X= 0, and ‘Go = z1 (0) is the root of the ewation (q (rl, z,,O)-f. (E (q, zl,O), 

q bl, 71, 0))) = 0. Thus if the solution of Eq. (2.10 ) with x = 0 for some va- 
riable is substituted into system (2.11) (with i( = 0 ), the order of the latter is 
reduced by one. The solution of the problem of optimal control of a system with one 
degree of freedom reduces to a quadrature and the final equation that determines ~~(0). 
The above exposition implies that the order of the integrable input system of a (212 

+ 2) -nd order can be reduced by three. What is particularly important is that the 
slow variables are integrated independently of the fast phase. This makes possible the 
introduction of the slow time z = et with the resulting considerable reduction of the 
volume of calculations required for numerical solution of the boundary value problem. 

The analysis of the optimal control problem in Sect. 1 and 2 yields the approxi - 
mate solution 

u = ~a* (a, $, q*), J* = J, (0) (2.17) 

E* = E (‘6, 71 (Oh o>, -I* = q 6, ‘tl 0, 0) 

Investigation of specific problems of motion control of nonlinear oscillating systems 
shows that the proposed method is applicable even in certain cases in which function 

u* (1.5) is discontinuous with the number of discontinuities of the first kind - [E-‘I 
in the considered time interval [3, 111. In such problems the effect of the quantity 
q - c has little effect (-e) on the control and the functional: its optimal mini - 

mum average value is directly obtained from the equations of motion. As the result 
of application of the averaging method it is possible to prove in first approximation the 
occurrence of local optimal controls ; for solving the problem it is necessary to integrate 
Eqs. (1.1) with known discontinuous right-hand sides. Substantiation of the use of the 
averaging method in the case of such systems may be derived on the basis of WI, 
where the convential system [l ] was considered. 

A one-to-one correspondence is established between II, and r when o (a) > 
o. > 0 and 8 is fairly small, hence by dividing the system by -+‘= w (a) + 0 (e) 

it reduces to the conventional form 5’ := EX (t, z) + 0 (Ed) , for which the statement 
in Cl21 holds. 

Let function X (t, 2) be uniformly bounded, and 

t 5 

s s 
dt’ A- (t’, I’) dx’, t E [to% 00)) 2, c E n 

to e 

be continuously differentiable ; there exist the uniform limits 

lim + 
T-cm I X(44dt=X,(X), ZED 

to 
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where X-f-rkED and rt is a decreasing sequence of numbers, It is assumed 
that Xo (4 satisfies the Lipschitz condftion for x E D, that the solution 8 (2) of 
equation dE / dz = X0 (E) lies in D for z E IO, =) together with its P - 
neighborhood, and that the solution x (t, E) of the input system that satisfies con - 
dition 5 (4, e) = % (01 is unique. Thea for any n > 0 and L as large as de- 
sired there exists such 80 > 0 that when 0 < a < e. for the solution 5 (t, 4 we 
have the inexact 1 x (t+ ef - E (z) ] < q for t E [to, h-l]. 

This theorem and the similar one for the case of smooth right-hand sides [I] does 
notensuretheestimate Ix-El -e. If the conditions formulated above are sup- 
plemented by the requirement for function \ z (t, X) dt to have continuous deriva - 
tives with respect to 5 E D, function N , which is the mean value of function 2 
with respect to t in the interval 1% 4, + Tl , decreases fairly rapidly as 2’ + CO , 
i.e. there exist such constants To > 0 and do > 0 that the inequality I fV I < 

dc,T-’ is ~iformly satisfied ~~ghout the considered region for 2’ > T, . The 
more accurate estimate I x - % I < de is then valid when t GZ Ito, Lrz-ll, where 
O<d<oo. 

Note that the general scheme of obtaining higher approximations with respect to 
powers of 8 El3 , in particular the canonical method of averaging [S 1, can be applied 
to system (I. 1 f , (1.6 f . 

3. Example~.l,kt us consider a rotation system with one degree of freedom that 
is close to the conservative system 

m (5) 5” + ‘/,m’x’2 + 8’ (5) = EU -+ ef (2, 5’) (3.1) 

~>xn’>x’>x,‘>O, co>%>,m&ml>O 
m>V,>V>Vv,> --00 

where x is the generalized coordinate, 2’ = dz / dt is the speed of rotation , m (4 
is the “mass”, V (4 is the perturbing function of the 2n -periodic function f 
of 5 , and u is the scalar control. It is assumed that m, V and f are fairly 
smooth functions. The initial conditions are : 5 (0) = x0 and 5’ (0) = x0’ > 0. 

Equation (3.1) is integrable when e. = 0 

D = +Q?,x.~ + V, &j-Y== dz/5’(a,x) 
s 

where II is the total energy and y is the phase constant, Using the substitution 
(z, x’) --f (a, 9) we reduce system (3,l) to the form 

a’ = EX’ (u + f), 2’ (a, 2) = (2 / rnFiz (a - V)“p, a (0) = a0 

II’ = 0 (a) + 0 (&I, 0 (a) = 27l/ 
s6 ax 1 x.9 II, (6) = 90 

Since the general unperturbed solution is known only implicitly, the first approx- 
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imation averaging can be effected using the relationship d(i, = 0 (a) ii~ I 2’. 
When the considered problem is 1 a I Q uo, M = 4 - u1 (aI > v,), g = et and the 

mean of external forces ef per revolution is zero, <f (5)) = 0, the approximate 
solution 

r 
: 

IL* = ZIP sign (al - a@), uoZ sign (aI - a,) = 
s 

&’ - 
0 (5’) 

aa 

is unique, and when V = const 

C’/’ =; q + @‘It - $) rr;r, .$ = I+ a’o/p 1 p 

If, however, cf (5)) f 0, the solution is deponed by the equation for F, with the 
initial and boundary conditions 

d% / d-c = uoa (E) GP (a1 - ao) + (f (%)>, % (0) = ao, % (z,) = a1 

That problem not always has a solution, i.e. z, > 0. 
To illustrate the method developed in Sect. 2 we present the analysis of a “smooth ” 

system in which m (z) EZ 1 and V = con&, . The terminal condition (1.2 ) is to 
have z* (q) = q (z*, q > 0), and the functional is of the form J = b (q) where 

db ! dz = k + up, b (0) = 0, and k>O. In such formulation z is the phase 
and x’ is the slow variable. In accordance with Sect, 1 U* = l/tip, where p 
is the conjugate variable of I’ . Solution of the boundary value problem of the kind 
(2.11) is 

% (‘t, Zi, x) = (K f 4) (T - 23% - (z - al) q-1 (Au + 1~6~~ I 4) + q (3*2) 
n (z, zl, x) = - x (‘G - q) - 2~,-~ (AY + xzlB / 4), Au EZ u. - vi 

On the basis of (3.2 ) 
~0 (ri,x) = 2kc,- x-1’ / 24 - x~,Au / 2 - XU,Z, 

We have to determine the m~irnurn of Jo with respect to x and with allow- 
ance for condition of the kind (2.12 ) , (~1% - k) zlB 4- (Au -I- XXI’ i 4)’ = 0. As ex- 

pected the implicit derivative of ~~ at point x = 0 is zero, since 

The second derivative (see (2.15 ) ) is positive 

d2J, 

-I 
%I3 (0) 

dx” x=_o =24 

The approximate solution of the opMmum control problem is of the simple form 

u* =1 - Avz;’ (0)) Jo* = ZJC”~ 1 A.v 1, z1 (0) = 1 Av [ k-“s, < = v. - Avz;l (0) z 

2. We consider the controllable plane motion of a point in a gravitational field 
C8,lO 1. In dimensionless variables of time t and polar coordinates (r, (P) the 
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vq2r-1 - r+ + 8ur, r(O) =ror VP (0) = VT0 (3.3 ) 
(P’=vJ-1, v ~=-vDTv~r-l+euV, V ~(O)=cp,, v,(O)=0 

WO 

where uy and uq are control functions and e is a small parameter. When e = 0 
the system is integrable 

‘/&.a + UP2) - r -l = E, rvp = K, r = p (1 + e cos x)-l (3.4) 

r = ‘la 1 E I-1 (1 - e cos g), t + 6 = (2 1 E I)-‘/’ (5 - e sin E) 

where E < 0 is the energy, K > 0 is the moment of momentum, p = Ka is the 

focal parameter, 0 < e =. (1 + 2EKa)“’ < 1 is the orbit eccentricity, 5 = cp - y, 

and Y and 6 are arbitrary constants. Motion of the point is bounded and periodic 

of period T that depends only on energy 2’ (E) = 2n (2 I E I)-J” . The angular vari- 

able ‘P during a period obtains a 2~ increment since 
z 

x=$- S[ (1 - e2)3/z 

(1 + e c0S da 
-1 dy, Ip=&+6) 1 

0 

(3.5 1 

Formulas (3.4) and (3.5) make it possible to pass to the following system of the kind 

(l.l)when E#O : 

E’ = e (up,. + vquo), K’ = wuq 

y’ = &C1p’lp [ur COS 5 + (2 + e c0s 5) (1 + e co9 x)-l uw sin 51 

$,’ = 2nT-’ - (1 - e’)“’ (1 + e CO9 2)-ay’ + ((1 + e) (1 + 

e COS 5)-l sin za [(I - e)“’ (1 + e)+] / f3e - f3 [e (1 - ea)‘iz(l + 

e co9 I)-‘]/& sin 5) e’ 

Initial data for (3.6 > are determined by formulas (3.3 > - (3.5 ) , and 

e’ = Ep ‘/t{~r sin 5 + uq [e (1 + cosas) + 2 co9 I] (1 + e co9 x)-l) 

p’ = 2Eppsia uk (1 + e cos 5)-l 

For (3.6 > we have the following optimal control problem : 

E @I) = E, < 0, J = It1 +;s L&Z 

0 

(l>O, u2 = UT2 + UQZ) 

(3.6 ) 

(3.7 ) 

Formulation of the boundary value problem is based on the considerations in Sect. 
1. Since the angular variable does not in fact appear in the right-hand side of system, 
its conjugate variable Py is identically zero, since P*’ = - aH / @’ = 0 and 

P, 01) = 0. Then from the estimate p+ = 0 (e) follows that for tr - 8-l 

in the first approximation 

UT+- = %PEVr 9 uq* = ‘12 (PEvV + pg) (3. S ) 

where P+, PE? and PK are the respective conjugate variables. The averaging 
of system (3.6) is similar to that in !&ample 1 and is carried out using the relationship 
d$ = 2nT-lp”l’ (1 + e cos z)-~ dx. The averaged system implies that pK f 0, since 
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> 
PKt PK 6) = 0 

Here and subsequently the old notation is used for the averaged variables. As the 
result, we obtain the explicit solution of the boundary value problem and the formula 
for the controls (3.8 ) 

E (~1 = R, ( 
P+r 

f +2--pz,- ) PE tT) - 
-2P (3.9) 

9 2 - (3 - %I P 
R (~1 = K, (I- l/spz,) ii - ~/~p (z, - z)l-1, 71 = fill R, I”‘- I Eo i”’ I P” 

p = (2Z/ 1 E, I)‘/’ sign ii - (EO ,!RJ’h]I u,* = ‘/APE b’) VT’ UT* = ‘@E @) vq 

where velocities 9, and uu, may be expressed in terms of 9 and Y with y = 
y. = const, since it follows from (3.6 ) that the mean value of Y’ is zero. Hence 

VT = ep-‘K ain (cp - yO), vqp = p_lK (1 + e co9 (9’ - vO)] 

The averaged slow variables e and P are defined in (3.9) in terms of E (Z) 
and R (T) . If the eccentricity e is “small”, the radial control component ur* - e 
is also small, while the transversal component s** - 1 is a slow varying function 
on which are superimposed small vibrations of amplitude - e, 

8. The proposed method can be applied for solving certain problems of optimal 
control of rotation of a solid body relative to its center of mass [lo] (Euler’s problem), 
The motion is considered in a system of coordinates attached to the principal central 
axes of inertia, and the control is effected by small moments eM,, e&Z%,, and eNz. 
If the body is symmetric about the + -axis, i.e. the moments of inertia satisfy the 
condition r, = f, # r, , the equations of motion are of the form 

o,‘+(d-l)oVo,=eu,, uX=MSIil, o,(O)=o,, (3.10 1 

ov’ + (1 -d) W,,J$ = eUuy, uy = M,Z,l, oy (0) = WV0 

w,‘ = EEIZ, d = 1,z;’ # 1, uz = A$Z;f, wz (0, = cJ$ 

The substitution 
0, = 4 cos 9, ov = a sin $7, W, = c (a > 0, c # 0) 

reduces system (3.10 ) to the conventional form (1.1) 

a’ = e (uz co9 * + uy sin $), c’ = eu,, a (0) = a0 = (oEo + @zD)“’ 
*p’ -_ (d - 1) E + efr-1 (uu cos tp - u, sin $), c (0) = QJ = @,a% 9 (0) =90 

Let it be necessary to slow down to zero the speed of rotation abcut the 2 - and 
y -axes in the shortest possible time tl with arbitrary %#O I and let the con- 

trols be bounded by the ellipsoid ~~Sl~-a + z@z!,-~ + Qi,-ad 1, where lx, 41, 
and Zz are constants. The approximate set of controls is then obtained in the ex - 
p&it form 

u z -_ - lX~~r-l, uy = - Iu~Wr-l, uz E 0; r = (lx%,* + L~2~~a)‘/a 

The solutions of equations and the minimal time are also obtained in explicit form 

a = a0 - <R)a, c = co, rr = a,<R>-1 
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where E is a complete integral of the second kind. The same solution applies to this 
problem when the body is only close to a dynamically symmetric, since the mean of 
small additions to the gyroscopic terms is zero. 

Let now the set of controls be bounded by a cylindrical region us2 + uu2 < l2 and 
I uz I < h , Such control scheme consists of a pair of fixed motors developing a limited 

moment about the axis of symmetry z and of a pair of vernier motors on the z -axis 

which develop moments limited by a circle about the z - and g -axes, Let, further- 
more, the boundary conditions be of the form a (tl) = a,, c (tr) = c1 = ozl. The prob- 
lem thus stated leads to theparticularcontrols uX = cos II, sign p, uy = sin $ sign p, 
and uz = sign q, where sign. p and sign q are piecewise constant functions of 

z which have a finite number of discontinuities, and are such that 

71 51 5 sign p dt = 7 al-a0 0 
2% - ozo , s ’ 

sign q dz = h 
0 0 

i, = max {I a, - a, 1 1-1, 1 ozl - ozo ( h-l) 

Some other problems of control of solid body rotation using small control moments 
with allowance for perturbing forces of various nature (gyroscopic , gravitational, vis - 
cous friction, etc. ) can be solved similarly. 
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